
CALCARB® RIGID CARBON THERMAL INSULATION

OPTIMIZE THE THERMAL EFFICIENCY OF YOUR PROCESS WITH CALCARB® SOLUTIONS

GLOBAL SOLUTIONS FOR OUR MARKETS

Mersen's expertise is demonstrated in the energy efficiency and thermal control of numerous high temperature industrial processes. Its range of thermal insulation materials includes a variety of rigid and flexible materials.

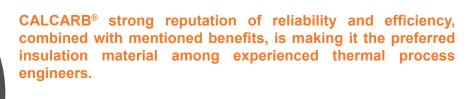
CALCARB® CBCF is made up from short cut carbon fibres, interconnected in a matrix produced by the carbonisation of phenolic resin.

MAIN APPLICATIONS

CALCARB® CBCF insulation enables the perfect protection and regulation for very high temperature furnaces from 1,000°C up to 3,000°C.

Main applications are:

- · Heat treatment in controlled atmosphere
- CVD furnaces
- Crystal growing industry (Semicon, solar...)
- Optical fibre
- Turbine blade casting
- SiC wafer manufacturing up to 2,400-2,500°C



MERSEN'S COMPLETE SOLUTION FOR HIGH-TEMPERATURE PROCESSES.

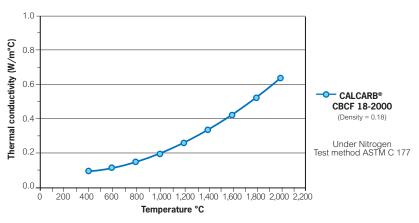
As an expert in composite or graphite refractory materials and high-temperature insulation, Mersen sells "machined to design" solutions, with turnkey services capability.

TECHNICAL BENEFITS

SUITABLE FOR PERFECTLY PURE PROCESS CONDITIONS

CALCARB® CBCF is a short fibre insulation originating from rayon. These fibres are interconnected in a matrix produced by the carbonisation of phenolic resin. The material is then vacuum-treated at temperatures above 2,000°C to ensure **its temperature stability and the absence of outgassing**.

As a benchmark, the material contains no more than **500 ppm of impurities. Impurity levels below 20 ppm** can be achieved through a purification process.


STRUCTURED FOR EXTREME INSULATION PERFORMANCE

The short-cut fibre structure of **CALCARB® CBCF** provides the best thermal insulation properties at a high temperature, making it the material of choice among our customers concerned about the **energy efficiency** of their process.

Density and grade differences are used to modulate the material's thermal characteristics:

CALCARB® CBCF 14VF-2000 for unparalleled insulation performance

CALCARB® CBCF 18-2000 or CBCF 25-2000 for modulating between insulation and gas permeability.

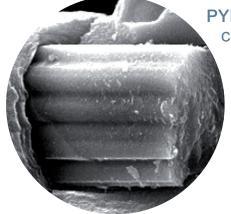
PRECISION MACHINED TO DESIGN HOT ZONE

Whereas insulation made from long fibre structures can delaminate during machining processes, **CALCARB®** rigid insulation can be easily machined with conventional means.

The material's homogeneity, combined with its ability to be

machined into very complex and intricate shapes, enables precise thermal gradient control in high temperature processes.

This property is one of the main contribution to CALCARB's established reputation, for instance in the new generation of crystal pullers.


EXTENDED SERVICE LIFE, EVEN IN THE MOST AGGRESSIVE ENVIRONMENTS

Mersen has developed a complete range of processes designed to reinforce the resistance of CALCARB® CBCF in aggressive environments.

PYROCARBON PROTECTION

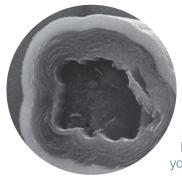
CVI pyrocarbon layer to fibre:

Embedding core fibres into 99.99% pure carbon, the infiltration provides protection in harsh environments with a greater than 50% extended life over standard material.

Calcoat CVD: a pyrocarbon outer layer:

The pyrocarbon outer layer acts as a protection without changing thermal characteristics.

It is a dense erosion resistant coating applied by CVD process.


Being applied to all finished surfaces of machined parts, it offers beyond the erosion protection, a barrier against impregnation from process vapours.

CALCOAT AND CALFOIL EXTERNAL PROTECTION

Calcoat is a standard graphite paint that inhibits dusting by sealing all coated surfaces. It offers a limited erosion resistance.

Calfoil is a high purity graphite foil protection that inhibits also dusting, enabling a better temperature uniformity along plane of foil.

INNOVATIVE SILICON CARBIDE PROTECTION

In some specific conditions, like hydrogenated atmosphere over 1,000°C, carbon fibres are corroded by the medium. As insulation parts are often the critical part of such process, the silicon carbide infiltration provides an unparralled advantage. Mersen unique expertise in this field can help to reduce maintenance downtime of your process by extending the insulation service life.

PRODUCT'S STANDARD DIMENSIONS

Material Boards and Disks

Board size		Board thickness			
48 x 42 inches / 1,219 x 1,067 mm		Up to 8.5 inches / 216 mm			
52 x 48 inches / 1,320 x 1,219 mm					
52,5 x 52,5 inches / 1,333 x 1,333 mm					
60 x 40 inches / 1,524 x 1,016 mm					
60 x 60 inches / 1,524 x 1,524 mm					

Standard density	Disks size	
VF : 0.16 g/cc +/- 0.03 g/cc	Φ 25 up to 73 inches	
Standard: 0.18 g/cc +/- 0.03 g/cc	Ф 635 up to 1,854 mm	
Dense 0.25 g/cc +/- 0.03 g/cc	Disk thickness	
	Φ 25 inches	
	Max thickness is 16 inches	
	Φ 69 inches	
	Max thickness is 10 inches	

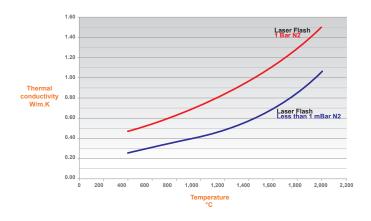
Material Cylinder up to 1,400 mm

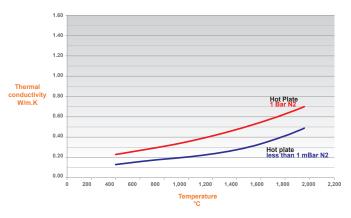
Internal diameter	Max height	Max wall thickness	Standard density					
Ф 65 up to 400 mm (+/- 0.5 mm)	350 mm	40 mm	VF: 0.14 g/cc +/- 0.03 g/cc					
Ф 400 up to 1,100 mm (+/- 0.75 mm)	500 mm	55 mm from	Standard: 0.15 g/cc +/- 0.03 g/cc					
Ф 1,100 up to 1,400 mm (+/-0.75 mm)	880 mm	55 mm	Dense 0.18 g/cc +/- 0.03 g/cc					

The fibre orientation is perpendicular to this axis and random on height.

Typical Cylinder Construction

Barrel Stave Construction over Φ 1,600 mm





MAIN PROPERTIES

Physical Properties							
	VF Board & Cylinder	Standard Density Board	Standard Density Cylinder	Dense Board & Cylinder	High Density Board		
Grade	CBCF 14VF-2000	CBCF 18-2000	CBCF 15-2000	CBCF 25-2000	HD		
Bulk Density g/cm³	Cylinder 0.14 ± 0.03 Board 0.16 ± 0.03	0.18 ± 0.03	0.15 ± 0.03	0.25 ± 0.04	> 0.30		
Compressive Strength MPa Parallel to fibre orientation (xy) Perpendicular to fibre (z)	1.09 0.23	1.10 0.76	0.80 0.20	2.10 1.07	3.20 2.30		
Flexural Strength MPa Parallel to fibre orientation (xy) Perpendicular to fibre (z)	1.65 0.20	1.03 0.15	1.50 0.20	2.70 0.62	2.32 1.45		
Coefficient of Thermal Expansion 25 to 1,000°C 1,000 to 2,000°C	$2.9 \pm 0.2 \times 10^{-6}$ $2.2 \pm 0.2 \times 10^{-6}$	$3.0 \pm 0.3 \times 10^{-6}$ $2.6 \pm 0.3 \times 10^{-6}$	3.0 ± 0.3 × 10 ⁻⁶ 2.6 ± 0.3 × 10 ⁻⁶	3.0 ± 0.3 × 10 ⁻⁶ 2.6 ± 0.3 × 10 ⁻⁶	3.0 ± 0.3 x 10 ⁻⁶ 2.6 ± 0.3 x 10 ⁻⁶		
Specific Surface Area m².g ⁻¹	22	18	20	11	17		
Electrical Resistivity Ω.m Parallel to fibre orientation (xy) Perpendicular to fibre (z)	12.5x10 ⁻⁴ 52.1x10 ⁻⁴	11.0x10 ⁻⁴ 40.7x10 ⁻⁴	25.0x10 ⁻⁴ 74.0x10 ⁻⁴	5.90x10 ⁻⁴ 15.93x10 ⁻⁴	12.0×10 ⁻⁴ 4.0×10 ⁻⁴		
Thermal Conductivity W/m/K 500°C 1,000°C 2,000°C	Vac N2 Ar 0.06 0.11 0.08 0.16 0.28 0.21 0.62 0.97 0.76	Vac N2 Ar 0.26 0.48 0.36 0.41 0.72 0.54 1.00 1.47 1.16	Vac N2 Ar 0.18 0.35 0.26 0.31 0.54 0.40 0.83 1.24 0.98	Vac N2 Ar 0.39 0.70 0.55 0.57 1.01 0.75 1.22 1.79 1.38	Vac N2 Ar 1.49 2.77 2.06 1.65 2.89 2.14 1.99 3.03 2.32		

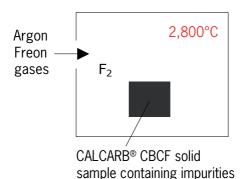
Calcarb[®] CBCF 18-2000 Thermal Conductivity vs Temperature

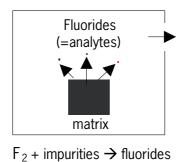
Laser Flash Diffusivity ASTM E-1461

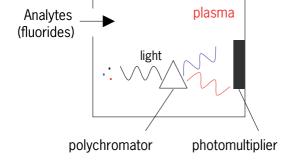
A sample of material is heated to the required temperature. A laser pulse is applied to the front surface of the sample;

A laser pulse is applied to the front surface of the sample; and the thermal diffusivity is determined by measurement of the rate and intensity of temperature increase on the back face

The thermal conductivity is then determined from the sample density, its specific heat value at the required temperature and the determined diffusivity.


Hot Plate ASTM C-177


A hot-plate is heated to the required temperature. The power to maintain this temperature at equilibrium, with reference to a known cold plate and surface area, gives a measurable thermal energy flux.


Thermal conductivity is measured using the temperature drop across a sample of defined thickness and the measures thermal energy flux of the system when in steady state equilibrium.

MEASURES OF IMPURITY LEVELS

OUR METHOD ETV-ICP-OES

Sampling, loading and heating Electro Thermal Vaporization

Inductively Coupled Plasma Optical Emission Spectrometry

KEY ADVANTAGES

- Simple and rapid acquisition: up to 50 samples analysed per day with automatic loading. Suitable for routine analysis.
- Sampling and calibration of graphite possible with existing standards and reference solutions, which is not the case with the GDMS method (Glow Discharge Mass Spectrometry).
- Very low limits of detection for most elements of the periodic classification, 1 50 μg/kg = ppb (parts per billion).
- Perfectly adapted to purified graphite, carbon/carbon composite and carbon insulation materials.
- Value-added service for customers.

Results of ICP - ETV – Inductively Coupled Plasma Mass Spectroscopy Results are Based on a 22 Element Table [Contact Mersen Scotland Holytown Ltd for the list 22 of elements])

Data herein contained are provided for general information purpose only and are not binding. Mersen shall have no liability whatsoever with respect to information contained herein. Duplication, reproduction or translation of any information contained herein, in whole or in part, is strictly prohibited without prior written consent of Mersen.

Our materials are in conformity with the RoHS-Directive (Restriction of the use of certain Hazardous Substances in electrical and electronic equipment). Besides Mersen guarantees the application of the European Community REACH-Regulation (Registration, Evaluation, Authorization and Restriction of Chemical substances) to all its plants located in Europe. We are constantly involved in engineering and development. Accordingly, Mersen reserves the right to modify, at any time, the technology and product specifications contained herein.

A WORLD EXPERT in materials and solutions for high temperature processes

A GLOBAL PLAYER

Global expert in materials and solutions for extreme needs to enable them to optimize their manufacturing environments as well as in the safety and reliability of electrical equipment Mersen designs innovative solutions to address its clients specific

process in sectors such as energy, transportation, electronics, chemical, pharmaceutical and process industries.

MERSEN USA Midland-MI Inc

P.O. Box 186 2927 Venture Drive Midland MI 48640, USA

Tel.: +1 989 835 7604 Fax: +1 989 835 2195

MERSEN France Gennevilliers

41 rue Jean Jaurès - BP 148 F-92231 GENNEVILLIERS CEDEX FRANCE

Tel.: +33 (0)1 41 85 43 00 Fax: +33 (0)1 41 85 45 11

Contact for Europe

MERSEN Scotland Holytown Ltd.

11 woodside, Eurocentral, Holytown, ML1 4XL, UNITED KINGDOM Tel.: +44 1698 838710

Fax: +44 1698 838711

MERSEN Kunshan Co. Ltd.

#29 South Taihu Road, Kunshan Development Zone, Kunshan, Jiangsu Province, 215334, PR CHINA

Tel.: +86 512 5763 9808 Fax: +86 512 5763 9811